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Abstract—The race for innovation is driving Internet evolu-
tion. Internet software developers have to create more complex
systems while enduring the pressuring time to market. There-
fore, end-host software have bugs, vulnerabilities and cannot be
trusted. That’s why, among others, network Intrusion Detection
System (IDS), Intrusion Prevention System (IPS), firewall
or other network devices monitor such software to prevent
unexpected behaviors. However, their functionalities are limited
by design, because they can only handle a configuration of
predefined monolithic protocol layerings. In this paper we
present Luth, a midpoint inspection device that relies on the
composition and parallelization of predefined midpoint inspec-
tors (MI). We present the main functionalities offered by its
configuration language and interpreter. Finally, we benchmark
a prototype implemented in OCaml. This prototype runs in the
userspace of a GNU/Linux operating system, by means of the
libnetfilter queue library. We show how it efficiently inspects
and filters DNS hidden-channels encapsulated into 20 GRE
tunnels.
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I. INTRODUCTION

The race for innovation is driving Internet evolution.
Internet software developers then have to create more com-
plex systems while enduring the pressuring time to market.
Therefore, end-host software have bugs, vulnerabilities and
cannot be trusted. That’s why, among others, diverse network
devices, we generalize into the midpoint inspection de-
vices term, have been designed. Midpoint inspection devices
monitor end-host software to prevent unexpected behaviors
resulting from Internet malicious activities. For example the
packet filters i.e, a ”programmable selection criterion for
classifying or selecting packets from a packet stream in a
generic, reusable fashion” [1] mainly focus their work on the
performance of the packet selection [1], [2], [3]. Intrusion
Detection Systems (IDS) [4], [5] try to detect network
attacks, when Intrusion Prevention Systems (IPS) [6] try
to prevent the consequences of attacks [7], [8]. Stateless
and stateful firewalls aim at implementing a network policy,
that states, among others, which network services can be
accessed by which client [9], [10]. Such firewalls are driven
by languages and associated interpreters that can lead to
buggy configurations. Therefore, studies in [11], [12], [13],
address the problem of the coherence of existing stateless
firewall rules. The configuration of stateful firewalls is
addressed in [14]. Application detectors aim at detecting

the applicative protocols involved in a communication [15].
Finally, some languages are proposed to help creating new
IDS, IPS, firewall, application detectors, or other midpoint
inspection devices [16], [17].

We have a main criticism to formulate against all these
solutions. All these devices are based on the configuration of
a set of predefined layerings. In other words, this approach
proposes to configure monolithic protocol layerings. The
research done in network protocol architectures has lead to
what are called, dynamically configurable protocol layerings
[18], [19], [20], [21]. Such solutions split one protocol
into smaller primitive building blocks, which can then be
composed by a configuration language. The idea described
by the language in the FFPF packet filter [2], allows different
filters to be composed too. This is up to our knowledge
the only solution to configure a non predefined set of
protocol layerings. However, their solution does not provide
algorithms to check neither the correctness of the configured
layering, nor the factorization of unnecessarily duplicated
computation. That’s why we designed Luth, the tool we
present in this article. In section 2 we describe more in
detail the limits of the monolithic approach, to motivate and
introduce the need for a different approach. We present then
our contribution. Luth proposes a configuration language
and its interpreter to correctly and efficiently compose and
parallelize a given set of protocol inspectors. In other words,
providing a correct policy is written in its configuration
language, Luth computes and executes an inspection algo-
rithm. In section 4 we describe an online experiment in
which Luth filters DNS hidden channels encapsulated into
20 GRE tunnels. The conclusion of the article summarizes
our contribution and describes future works.

II. THE LIMITS OF THE MONOLITHIC APPROACH

Before going further we need to introduce the ’/’ operator
that composes interoperable midpoint protocol inspectors.
For example, we illustrate a stateless firewall rule accepting
network packets having the source 192.168.0.1 IPv4 address
and carrying TCP segment with destination port 22 as:
IPv4(src=192.168.0.1)/TCP(dport=22).

Let us illustrate more in detail the differences between
the monolithic approach, implemented by a tool T1, and
the approach we propose, implemented by a tool T2.



T1 provides inspection capabilities that can be configured
by a set of parameters pIJ , related to some layerings like
SL = {
S11(p11)/.../S1J1(p1J1), ..,
SI1(pI1)/.../SIJI(pII), ..,
SN1(pN1)/.../SNJN (pNJN )}.

Nowadays the network layerings and communications are
more and more complex and diversified, for at least two
reasons:

1) The encapsulation of protocols are widely used to
implement virtual private networks, or to evade inspec-
tion devices. For example actual IDS, IPS or firewalls
can be bypassed by implementing new protocol stacks
over HTTP1 or DNS2 among others.

2) The variety of software that implements different
services in the Internet. Each software has its own
bugs and should require a special and adapted in-
spection algorithm. For example, even if there is a
single TCP protocol, there is at least a particular
TCP implementation by operating system. Therefore,
each implementation presents different properties and
bugs. For example, it is useless to prevent the ex-
ploitation of the MS09-048 vulnerability present in the
TCP stack of some versions of Microsoft Windows
operating systems3, when inspecting TCP segments
towards a server running on an OpenBSD system.
Similarly, even if there is a single IPv6 protocol,
it is useless to inspect the possible exploitations of
the CVE-2007-1365 vulnerability, targeting the IPv6
stack of a version of the OpenBSD operating system,
when inspecting IPv6 packets towards a Microsoft
Windows operating system. Moreover, it is useless to
drop the exploitations of a vulnerability targeting one
protocol stack implementation if the application we
are monitoring uses a patched and corrected version
of the later.

Thus, the inspection of the sequence of network messages
sent by different applications that use different protocol
layerings, requires to implement very different and flexible
policies. We do think the monolithic layering approach is
not suited to this situation for two reasons:

1) The encapsulation of protocols creates circular depen-
dencies. Indeed, the monolithic approaches implement
the composition of protocols by hard-coded function
calls, linked imperatively [10] or using the inheritance
offered by object languages [5]. Let us try to imple-
ment the layering IPv4/HTTP/HTTPEncaps/IPv4/...,
that encapsulates IPv4 packets inside HTTP messages
to bypass a given midpoint inspection device. To
implement such layering, the HTTPEncaps inspection

1http://www.http-tunnel.com/html
2http://www.hsc.fr/ressources/outils/dns2tcp
3http://www.microsoft.com/technet/security/bulletin/ms09-048.mspx

function needs to call the one related to IPv4. There-
fore, HTTPEncaps depends on IPv4. Applying the
reasoning to the whole layering, we have IPv4 that
depends on HTTP (IPv4/HTTP). Then, by transitivity
HTTP depends on IPv4 (HTTP/HTTPEncaps/IPv4).
Finally, by transitivity again, each protocol inspector
function depends on each other. Such kind of circular
dependencies are difficult to implement, conducting to
messy and hardly extensible implementations. Among
others, we do think it is the reason why the solutions to
handle the GRE encapsulations are limited nowadays.
Indeed such solutions either:
• do not inspect protocols encapsulated inside a

tunnel [10],
• handle a single encapsulation [4],
• do not advertise the possibilities related to the

inspection of encapsulated layerings [7], [22], [5].
2) It requires more work to implement both the relations

between protocol inspectors and protocol inspectors
themselves, than implementing protocol inspectors
only. We do think that is why the variety of available
protocol inspectors is limited and not adapted to the
diversity of the situations to inspect.

Instead of relying on the configuration of a sequence of
monolithic protocol layerings, the approach we propose is
based on a set of midpoint inspectors, MI , that can be:

• configured by the parameters related to each MI,
MISET = {MI1(p1), ..,MIi(pi), ..,MIN(pN)},

• composed by means of the / operator,
• parallelized by means of the | operator. For example,

we illustrate a stateless firewall rule accepting network
packets having the source 192.168.0.1 IPv4 address,
carrying:

– TCP segments with destination port 22, or
– UDP datagrams with destination port 53, as

IPv4(src=192.168.0.1)/[TCP(dport=22)|UDP(dport=53)].
Let us take a more concrete case, involving the IPv4,

GRE, TCP and HTTP protocols. Let us say the midpoint
inspector needs to perform a policy that states:

1) The two extremities 192.168.0.1 and 192.168.0.2 en-
capsulate packets into two GRE tunnels. In the
encapsulated networks, only TCP segments should
be present in the packets from 10.0.1.0/24, and
10.0.2.0/24. Moreover, only HTTP requests should
be contained in the segments from 10.0.2.0/24, and
an IDS should launch an alarm when a host is try-
ing to send overlapping TCP segments to evade the
application level inspections [23].

2) One GRE tunnel is encapsulated from 192.168.1.1
and 192.168.1.2, where encapsulated packets belong
to the network 10.0.0.0/8. The clients accessing the
HTTP server in 10.0.0.1 should use normalized TCP
sessions, and a specific IDS algorithm should monitor



the applicative communications related to the web
service hosted in 10.0.0.1. The clients towards the
server 10.0.0.2 should speak by means of the TCP
protocol towards the server port 22.

To do so, the tool T1 should develop 4 different layerings
and, considering a ”default drop” policy, write the following
sequence of rules:

/∗ f i r s t p o l i c y r u l e ∗ /
IPv4 (
ext rm1 = 1 9 2 . 1 6 8 . 0 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 0 . 2 ) /GRE/ IPv4 /GRE/
IPv4 ( n e t = 1 0 . 0 . 2 . 0 / 2 4 ) / TCP ( mode= on ly \ t c p ) ;
IPv4 (
ext rm1 = 1 9 2 . 1 6 8 . 0 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 0 . 2 ) /GRE/ IPv4 /GRE/
IPv4 ( n e t = 1 0 . 0 . 1 . 0 / 2 4 ) /
TCP ( mode= r e a s s e m b l y i d s ) /
HTTP( mode= r f c c o m p l i a n c e ) ;
/∗ second p o l i c y r u l e ∗ /
IPv4 (
ext rm1 = 1 9 2 . 1 6 8 . 1 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 1 . 2 ) /GRE/
IPv4 ( n e t = 1 0 . 0 . 0 / 8 ) /
TCP ( mode= s t r e a m n o r m a l i z a t i o n ,
s r v a d d r = 1 0 . 0 . 0 . 1 ) /
HTTP( mode= s p e c i f i c i d s ) ;
IPv4 (
ext rm1 = 1 9 2 . 1 6 8 . 1 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 1 . 2 ) /GRE/
IPv4 ( n e t = 1 0 . 0 . 0 / 8 ) /
TCP ( s r v a d d r = 1 0 . 0 . 0 . 2 , s r v p o r t =22)

To do so, the tool T1 should implement the protocol
inspectors:

• IPv4 with the parameters extrm1, extrm1, net,
• GRE,
• TCP with the parameters mode, srv addr, srv port,
• HTTP with the parameters mode.

Moreover, the tool should implement the links involved in
the different layerings, which are in this case 4, i.e:

• IPv4/GRE/IPv4/GRE/IPv4/TCP ,
• IPv4/GRE/IPv4/GRE/IPv4/TCP/HTTP ,
• IPv4/GRE/IPv4/TCP ,
• IPv4/GRE/IPv4/TCP/HTTP ,
By using the approach based on the composition and

parallelization of parameterized MIs, the tool T2 could be
configured like this:

Listing 1: Configuration of T2�
[
IPv4 (
ext rm1 = 1 9 2 . 1 6 8 . 0 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 0 . 2 ) /GRE/ IPv4 /GRE/
[ IPv4 ( n e t = 1 0 . 0 . 2 . 0 / 2 4 ) / TCP ( mode= o n l y t c p ) |
IPv4 ( n e t = 1 0 . 0 . 1 . 0 / 2 4 ) /
TCP ( mode= r e a s s e m b l y i d s ) /
HTTP( mode= r f c c o m p l i a n c e )
] |
IPv4 (

ext rm1 = 1 9 2 . 1 6 8 . 1 . 1 ,
ex t rm2 = 1 9 2 . 1 6 8 . 1 . 2 ) /GRE/
IPv4 ( n e t = 1 0 . 0 . 0 / 8 ) / |
[ TCP ( mode= s t r e a m n o r m a l i z a t i o n ,
s r v a d d r = 1 0 . 0 . 0 . 1 ) /
HTTP( mode= s p e c i f i c i d s ) |
TCP ( s r v a d d r = 1 0 . 0 . 0 . 2 , s r v p o r t =22) ]
]

To do so, T2 should develop the same number of protocol
inspectors as in T1, and implement the generic composition
and parallelization of protocol inspectors. The need for
implementing such generic relations can be motivated by a
similar policy where the number of GRE tunnels is different.
For example, if the number of tunnels is reduced to zero,
the tool T1 should implement two different layerings, i.e

• IPv4/TCP ,
• IPv4/TCP/HTTP ,

when the tool T2 is already capable of implementing it.

III. MAIN IDEAS BEHIND THE INTERPRETER OF THE
CONFIGURATION LANGUAGE

In this section, for the sake of brevity, we only present
the main ideas behind the interpreter of the configuration
language. For a more detailed description, the reader is
invited to read [24]. The interpreter of the configuration
language tries to create a valid and optimized tree from
the configuration rule. Then, an inspection algorithm is
deduced by browsing and updating this tree, implementing
the state of the inspection. The basic element of our systems
are Midpoint Inspectors (MI). The interpreter offers three
different features to analyze the deduced inspection tree:

• the validity of inspection trees,
• the missing default layers of an incomplete layering,
• the optimized version of valid inspection trees, that

factorizes duplicated father.
The input and output interfaces of an MI are defined by

their types. Then, analyzing this information, the interpreter
verifies whether the rule is correct and deduces an inspection
tree. For example the rule in Listing 1 is depicted in Figure
1.

Let us illustrate how the inspection algorithm behaves
by illlustrating the inspection of the Gre node emphasized
on Figure 1. Let us say its father, i.e an IPv4 node,
outputs a TCP segment contained in its payload. The
Gre node is expecting a GRE packet; therefore it sends
back the drop decision to its father without consulting its
children. Let us say its father sends him a GRE packet
to analyze. The Gre node extracts its payload and sends
the new message to its two IPv4 children. The latter
recursively inspect the packet. Each of the children send
back a decision, ds1 and ds2, to their father, i.e the Gre
node. To compute a decision from a set of decisions, the
inspection algorithms uses a reduce function. The only
condition such a function needs to fulfill so that factorized
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Figure 1: Inspection tree deduced from the rule in Listing
1.

and non factorized trees perform similar computations is
the following: ∀X ∈ ℘(℘(DS)), reduce({reduce(x), x ∈
X}) = reduce(

⋃
x∈X x) [24]. We use an analogy with

election algorithms to illustrate this property. In indirect
elections, people first vote for special electors, who, in a
second round, make the final choice. By taking as X, the
set of people electing their special electors, the election of
super electors can be seen as {reduce(x), x ∈ X}, and the
choice of super electors as reduce({reduce(x), x ∈ X}).
In direct election systems, all the people vote at once which
can be seen as reduce(

⋃
x∈X x). The property of this reduce

function aims at imposing that the same decision is taken
using direct or indirect algorithms. Coming back to our
inspection tree, the Gre node finally sends back the decision
reduce({ds1, ds2}) to its father.

IV. IMPLEMENTATION AND BENCHMARKING OF THE
MIDPOINT INSPECTION DEVICE

This section presents Luth, the midpoint inspection device
prototype we developed.

A. Name and Targeted Platform

Luth is a new kind of midpoint inspection device that can
be configured with great flexibility. Inspired by the analogy
made by computer firewalls, Luth stands for Lur Ur Ta
Haize, which means in Basque language, Earth, Water And
Wind. Indeed, fire can be stopped by water and earth or
propagated by wind. The same way Luth can use different
ways to inspect Internet communications, or to let some

anomalies bypass itself. The implementation of Luth is
written in OCaml, making a quite extensive use of the
Melange library to safely and efficiently parse packets [25].

To perform online inspections, the binding of the libnet-
fliter queue [10] to OCaml has been developed with the
help of the stub code generator CamlIDL4. This library
offers some system-calls to communicate with Netfilter,
GNU/Linux’s framework to implement firewalls and NAT
routers. To check the correction and measure the perfor-
mance of the current implementations we perform an exper-
iment addressing DNS tunneling.

B. Inspecting DNS hidden-channels

To get the Internet for free in commercial hotspots, a
hidden-channel can be established using the DNS protocol.
Indeed, to redirect new clients’ first web page requests
to a portal where the payment system is explained, this
kind of hotspot needs to let the client make DNS5 re-
quests. However, whereas this service only needs to make
hostname resolutions, the hotspot usually let the users
ask all types of DNS requests. Users trying to get In-
ternet for free use the semantically vast enough TXT6

requests, to encode TCP segment into DNS messages [26].
To sum up, those bypassing layerings can be seen as
IPv4/UDP/DNS(messages=TXT)/Tunnel/... Therefore, to re-
move such channels one just needs to drop TXT requests.

1) Experimental Setup: To stress our firewall in this
situation we choose to install the dnsmasq7 DNS forwarder
in the server. dnsmasq forwards all the DNS requests it
receives to a real DNS server. We then bind the apache28

web server on the address 192.168.10.11, and generate
20 HTML pages. Each of these pages have 10 images.
Those images size follows a 1.2 pareto distribution [27]. We
multiply the pareto coefficients by 10240 to obtain image
sizes from 10 to 500KB. The simulation software in the
legitimate client makes a host name resolution request to a
predefined set of domain names, and then downloads one of
the 10 web pages only if the request is successful.

To implement the hotspot thief, we register a domain name
to make the DNS tunneling possible. We choose the dns2tcp
[26] tunneling framework and install the client software in
the client with the address 192.168.2.10 (Figure 2). Then,
we simulate a client that periodically uses the SSH protocol
over this DNS tunnel. After getting a shell on the distant
server, we ask the server to display the contents of one of the
100 files generated with the same pareto distribution using
the cat utility. With a coefficient of 10240, we obtain file
sizes from 10 to 189 KB. We associate a timeout of 10s
for the completion of these requests. To demonstrate that

4http://caml.inria.fr/pub/old caml site/camlidl
5http://www.ietf.org/rfc/rfc1034.txt
6http://www.isi.edu/in-notes/rfc1464.txt
7http://thekelleys.org.uk/dnsmasq/doc.html
8http://httpd.apache.org/
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Figure 2: Tunneled DNS filtering. The 192.168.2.9 client
downloads files from the HTTP server in 192.168.10.11 by
means of DNS and HTTP protocols. The malicious client in
192.168.2.10 uses a hidden channel by means of the DNS
protocol to download files from the SSH server.

Network
interface cards
(NIC)

Gigabit Ethernet controllers: Broadcom 5721J and
IntelPro1000PT

Interconnection Gigabit Ethernet: Cisco Catalyst 6504
Processors Dual Core Xeon 3050
Memory 2GB of 667MHz Dual Rank ECC Memory (2x1GB)
Operating
System

Debian GNU/Linux (2.6.18 kernel)

Table I: Computer and interconnection network’s character-
istics.

Luth can handle cyclic layerings, we implement the filtering
of this scenario into self-encapsulated GRE [28] tunnels as
depicted in Figure 29. All the different hosts are present in
laasnetexp, a testbed environment in our laboratory [29]. The
computers used in this experiment present the characteristics
described on Table I.

The server and the firewall, i.e the server executing
Luth, are connected by the 192.168.1.0/24 network. To
reach the 192.168.10.0/24 network, the firewall needs to
go through n Generic Routing Encapsulation (GRE) [28]
tunnels. The server, has to go through the same tunnels to
reach the 192.168.2.0/24 network. Finally the clients use

9The reader should notice that these tunnels are not necessary for both
clients to perform their downloads. Indeed, the tunnels only serve to
illustrate the expressiveness of Luth.

the 192.168.2.254 gateway to reach the 192.168.10.0/24
network. The implementation of the n encapsulations is
achieved using the iproute package of the Debian project10.
We configure n = 20 tunnels between the firewall and the
server.

To stress our firewall, we first randomly generate a
scenario: 5 clients download on each host, random files
during one minute every t, where t follows a law having
an exponential distribution of mean 0.01ms. We measure
for each download, the time from the start of the client
application to the end of it, divided by the size of the
downloaded file. This measure is noted download bandwidth.
For a failed download the client returns -1 as download
bandwidth.

We run the experiments in three cases studies.
• First, no firewall is put in the midpoint inspection

device, labeled Ref .
• Second, we put a userspace firewall we have written

for benchmarking purposes in C, labeled Cfw. This
firewall accepts all the packets after having read them
by means of of the libnetfilter queue library.

• Third, we put Luth configured with a certain rule in it,
labeled Luth.

2) Results Using a Default Configuration: We configure
Luth using the rule depicted in Listing 2. For the sake of
brevity, instead of Tcp(mode = stream normalization),
Dns(mode = no hidden channel), and Http(mode =
rfc compliance) we write the MIs, Tcp, Dns and Http.

Listing 2: DNS rule�
IF ( name=idx2 , a d d r s = d e f a u l t , messy=yes ,

l o = 1 9 2 . 1 6 8 . 1 . 2 5 4 ) ; ;
INSP (L2N / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /

Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /
Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / Gre / Ipv4 / Gre / [ Dns | Http ] ) ; ;

The filtering tree computed by the firewall which fills
the holes between Dns Http and Gre MIs is depicted
in Listing 3.

Listing 3: DNS rule’s MI Tree�
L2N / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 /
Gre / Ipv4 / T t l ( m i n t t l = 1 0 ) /

[ Tcp / [ TPort ( s r p o r t = 5 3 ) / Dns |
TPort ( s r p o r t = 8 0 ) / Http ] |

Udp / UPort ( s r p o r t = 5 3 ) / Dns ]

Figure 3 shows the bandwidth of the first of the five
unauthorized clients without Luth (other clients present sim-
ilar results). With Luth all malicious downloads output −1,

10http://packages.debian.org/search?keywords=iproute
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unfiltered case.
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load bandwidths reached in Ref and Cfw experiments are
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obtained during Luth experiment are in [9.3∗105, 1.9∗106[.

showing all such requests have successfully been dropped.
The five legitimate clients perform about 2000 downloads
during the experiment. Their download bandwidth reaches
106B/s, going from 1 up to 107B/s for the fastest down-
loads during the experiment without midpoint inspectors.
Figure 4 shows the frequency of the downloads in the
different slots from 0 to 9.3 MB/s. We see that the curve
labeled Luth seems to be the translation to the left of both
other curves, meaning that the bandwidths obtained with
Luth, are overall slower than in both the other cases.

By comparing Luth’s bandwidth curve, to Cfw and Ref
curve, both the side-effects due to being in userspace and
due to the performed inspections are taken into account.
However, we want to just evaluate the side-effects due to
the performed inspections. To have a better understanding of
the difference among these three distributions, Figure 5 plots
the following distributions representing the 2000 legitimate
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Figure 5: Evaluation of the side effect provoked by a
userspace firewall. Being in userspace creates a variabil-
ity that influences the bandwidth results as much as the
performed inspection ((Cfw − Cfw′ ' Ref − Cfw) 6=
Ref −Ref ′).

client downloads times:
• Ref - Ref’: Ref’ being the experiment Ref executed

another time.
• Cfw - Cfw’: Cfw’ being the experiment Cfw executed

another time.
• Ref - Cfw.
We see in Figure 5 that the difference of Ref - Ref’ is

negligible: the network state, and respective client and server
application states are stable enough during the two experi-
ments. The negative results obtained in Ref - Cfw shows that
some downloads have been faster in the experiment using
the firewall written in C, than in the Ref experiment. One
explanation of such a trend is that when the userspace fire-
wall written in C slows down some downloads, the following
downloads reach the HTTP server faster and are therefore
served more quickly than in the Ref experiment. Even if
interesting, we have not investigated this phenomenon more
deeply. What should be noticed here is that Cfw - Cfw’
looks like Ref - Cfw. By this, we see that the scheduling,
queueing, and context-switching, induced by the userspace
firewall creates a non negligible variability, independent of
the inspections done by the firewall (else Cfw - Cfw’ will
look like Ref - Ref’).

To isolate userspace side-effects and measure the ones due
to Luth inspections, we compare the difference between Luth
and Cfw and between Luth and Ref, with the differences
between Cfw and Cfw’, or Ref and Cfw. Indeed, the latter
two curves, i.e Cfw - Cfw’ and Ref - Cfw, exhibit the
side-effects due to being in userspace. That’s why Figure
6 illustrates the following plots:

• Cfw - Cfw’,
• Ref - Cfw,
• Ref - Luth,
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Figure 6: Distribution of download bandwidth differences in
DNS experiment with default configuration.

• Cfw - Luth.
As depicted in Figure 6, the curves Cfw - Luth, and

Ref - Luth have similar shapes. The same way the curves
Cfw - Cfw’ and Ref - Cfw present similar shapes, that
seem to be a translation from about 1MB/s to the left. This
translation shows a non negligible slow down induced by
the inspections performed by Luth in its default and non
adapted configuration.

3) Results Using a Custom Configuration: The rule in
Listing 4 aims at specifying a more adapted policy. If
the computations done by the hotspot’s HTTP server are
trusted11, inspecting the layering involved in the HTTP
session (TCP/HTTP) can be considered as useless. In this
case, we can configure Luth to accept all TCP segments,
without performing any inspection on them, and concentrate
the work on DNS filtering. This policy can be written using
the rule depicted in Listing 4.

Listing 4: Dns custom rule�
IF ( name=idx2 , a d d r s = d e f a u l t , messy=yes ,

l o = 1 9 2 . 1 6 8 . 1 . 2 5 4 ) ; ;
INSP (L2N / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /
Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /
Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /
Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre / Ipv4 / Gre /
Ipv4 / Gre / Ipv4 /
[ Tcp ( mode= t c p o n l y ) | Udp / Dns ] ) ; ;

The figures 7 and 8 show that with this configuration, the
slow down induced by Luth’s inspection is less visible.

In this case study, we have shown that Luth could be used
to efficiently implement a policy that drops DNS tunneling
in open hot spots.

V. CONCLUSION

We have presented in this paper the tool we use to
monitor malicious communications. The expressiveness of

11Indeed in this peculiar case, the DNS tunneling problem comes from
the DNS server.
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Figure 7: Distribution of downloads bandwidth obtained
with DNS filtering using optimized configuration.
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Figure 8: Distribution of download bandwidth differences in
DNS experiment with optimized configuration.

this midpoint inspection device enables to monitor, up to our
knowledge, all Internet protocol layerings while providing
correction and optimality checking. The DNS case study
shows that Luth, the userspace prototype of our midpoint
inspection device, correctly implements policies involving
20 iterations of a cyclic layering. The most promising
future work is the parallelization of the inspection algorithm.
Indeed, our inspection algorithm is similar to MapReduce
algorithms used by Google [30] and could therefore be
easily parallelized, i.e instead of waiting the answer of the
first child before asking the second child, an improvement
consists in asking all the children to inspect the output
messages in parallel.
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